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SUMMARY

The term ‘‘terroir’’ has been widely employed to link differential geographic phe-
notypes with sensorial signatures of agricultural food products, influenced by
agricultural practices, soil type, and climate. Nowadays, the geographical indica-
tions labeling has been developed to safeguard the quality of plant-derived food
that is linked to a certain terroir and is generally considered as an indication of su-
perior organoleptic properties. As the dynamics of agroecosystems are highly
intricate, consisting of tangled networks of interactions between plants, microor-
ganisms, and the surrounding environment, the recognition of the key molecular
components of terroir fingerprinting remains a great challenge to protect both
the origin and the safety of food commodities. Furthermore, the contribution
of microbiome as a potential driver of the terroir signature has been underesti-
mated. Herein, we present a first comprehensive view of the multi-omic land-
scape related to transcriptome, proteome, epigenome, and metagenome of
the popular Protected Geographical Indication potatoes of Naxos.

INTRODUCTION

Nowadays, given the globalization as well as the numerous technological developments and innovations

that govern the food market, consumer’s expectations have been tremendously increased in terms of in-

formation reliability of food labels.1–3 Therefore, the food industry and governments should be provided

with valid analytical methods and regulatory frameworks to ensure food certification via the reliability of

food labels considering consumer’s requirements. In the past decades, a plethora of deception incidents

have been occurred, bewildering the food market.4 Consequently, international operations have

developed a profound interest in preventing food fraud and securing food authentication. One of the

most common frauds involves selling low-quality food products at high prices. Accordingly, food

labels could include fabricated geographical origin or genetic identity, as well as inaccuracies in the

production process.4 Although food fraud appears to be price-related, in some cases, ingredients

dangerous to human health and allergens may be included in these food products, endangering consumer

safety.5

To prevent fraud of food products, scientists have developed several rapid, reliable, and efficient -omics

technologies for certification and identification, including genomics, epigenomics, transcriptomics,

proteomics, and metabolomics. The term ‘‘Foodomics’’, concerning the study of Food and Nutrition in

combination with -omics technologies, was initially launched in 2009.6 Despite the short time that the

‘‘Foodomics’’ domain exists in the scientific community, a wealth of technologies has been developed aim-

ing to study the quality, the origin, and the safety of human nutrition.7 An intriguing challenge in food

research is the validity of food labels, especially on products designated as Protected Designation of

Origin or Protected Geographical Indication (PGI), according to the EU geographical indications system

for food quality. These food quality labels can serve as a valuable tool to protect genetic resources, to sup-

port sustainable rural development, and to add value to food products through differentiation based on

their organoleptic properties and traditional ‘‘know-how’’ practices.1 In this context, there is an increasing
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demand from EU agricultural producers to differentiate and certify their products to enhance their compet-

itiveness in the global marketplace.2

Potato (Solanum tuberosum L.) is a fundamental species in human nutrition especially in the context of an

ever-increasing population. Nowadays, potato remains one of the most popular and crucial nongrain food

crops, occupying a prominent place in the agenda of global food security.8,9 According to Plant Production

and Protection Division, 2009, it is estimated that two billion people worldwide are closely associated with

potato cultivation for nutritional or income reasons, rendering it as ‘‘Food for the Future’’.11

Using potato as a plant model, in this proof-of-concept study, we present the first multi-omics analysis

across genome-wide DNA methylation, RNA sequencing, and quantitative proteomics to obtain the

molecular portrait of the famous PGI potatoes of the Naxos Island at harvest and after storage. We also

employed a metagenomic approach to discriminate potato tubers produced in diverse regions based

on the distinct microbiological patterns, which in turn were coupled with the -omics datasets. Through

this approach, key environmental-derived molecular factors through the dynamics of causal models

were revealed.
RESULTS

Bacterial community dynamics in periderm of tubers

The tubers are harvested and traded with soil residues in the periderm, which makes them ideal for using

the microbial community profiling as potential signatures in PGI certification. Thus, to detect distinct

differences in the tuber bacterial profiles cultivated in the two different agroecosystems, bacterial 16S

rRNA gene amplicon sequencing was performed in the tubers obtained at harvest and post-harvest (stor-

age) (Figure 1, Table S1). The alpha-diversity highlighted greater species richness in the tubers from

Naxos. Regarding species diversity, the microbial differences were only evident at post-harvest period,

with tubers from Naxos exerting higher microbiome diversity (Figure 1B). These results may be indicative

of the more rich and diverse microbial community of the PGI potato, especially after storage. By contrast,

tubers from Lakoma (herein served as control) seemed to be dominated by fewer microbial species.

Overall, microbiome communities at harvest of the Naxos tubers were dominated by Lysobacter,

Neobacillus, and Priestia, while the most abundant microbiota in the Lakoma tubers were Rhizobium,

Devosia, Sphighomonas, and Rhodoligotrophos (Figure 1C). Similar taxa were recorded as abundant

for tubers at post-harvest, with several of them being widely recognized as plant growth-promoting

rhizobacteria. Our data also demonstrated that, regardless the collection site, tubers at post-harvest

maintained their microbial community profiles at the genus level to a great extent, providing a tool

for PGI signature.

The NMDS analysis with the Bray–Curtis dissimilarity (b-diversity) indicated that tubers from the two

different agroecosystems were grouped separately from each other (Figure 1D), validating our hypothesis

that the collection sites have distinct microbial community composition. In addition, tanglegrams between

bacterial dendrograms showed that the bacterial structures between the two agroecosystems were dissim-

ilar both at harvest and post-harvest (Figure 1E). The LEfSe analysis detected 18 and 41 bacterial clades in

the tubers at harvest and post-harvest, respectively, discriminating the terroir-specific microbial commu-

nities in the two geographic regions. The dominant bacteria genus at harvest wasNeobacillus andMassilia

in Naxos and Lakoma, respectively. At post-harvest, candidate biomarkers belong to the genus of Neoba-

cillus and Priestia for tubers of Naxos, or of Rhizobium and Rhodoligotrophos for tubers of Lakoma. These

potential biomarkers were associated with each terroir, revealing their geographic-origin dissimilarities.

Interestingly, one genus identified as bacterial biomarker of Naxos,Neobacillus, was detected both at har-

vest and at post-harvest. Therefore, this genus not only seemed to be abundant in the PGI potatoes but it

also remained abundant after storage, dominating themicrobial community of potato tubers. By validating

this potential biomarker across different sample locations and years, a promising ‘‘terroir’’ biomarker for

traceability may be developed.
Individually constant methylated genes, expressed transcripts, and level of proteins in

potato tubers

To gain a comparative insight into how different environments built PGI signature, large-scale -omics tech-

nologies, i.e., epigenomics, transcriptomics, and proteomics, were applied.
2 iScience 26, 105917, January 20, 2023



Figure 1. Sampling sites and metagenomic analysis

(A) Sampling locations of tubers in Naxos (PGI potatoes) and Lakoma (control potatoes).

(B) Boxplots of alpha-diversity (Chao and Shannon indices) of microbiome residing in the tubers from the two regions, at harvest and post-harvest.

(C) Distribution of the top 10 most abundant taxa of tubers microbiota at the level of genus.

(D) Microbiome profiles in the tubers obtained from the two regions analyzed by NMDS using the Bray–Curtis distance matrix.

(E) Tanglegrams showing concordance between bacterial dendrograms based on community similarities (Bray–Curtis distance) derived from 16S rRNA gene

sequences from tubers of the two regions.

(F) Histogram of LDA value distribution of taxa at the genus level with significant differences in abundance between groups N: Naxos; L: Lakoma; H: Harvest;

P: Post-harvest. Data obtained from Table S1.
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Epigenetic marks of the potatoes from the two geographic regions

Plant epigenetic profile can be highly dynamic and plastic in diverse environmental conditions;12

therefore, we compared the DNA methylome of the tested potatoes (PGI and control) at harvest and

at post-harvest using whole genome bisulfite sequencing. Chromosome-level analysis of differentially

methylated regions (DMRs) at harvest and post-harvest revealed hypomethylation and hypermethylation

events in both gene regions and transposable elements (Figure 2A). DMR methylation level cluster

heatmap and violin plot highlighted even further these differences (Figures 2B and 2C). Focusing on

DMR-associated genes (DMGs) exhibiting hypermethylation or hypomethylation, we could detect at

least 13 and 29 DMGs at harvest and post-harvest, respectively (Figure 2D). When analyzing the

distribution of DNA methylation among various gene features, most DNA methylation (especially at CG

context) was recorded in the promoter and intron sequences rather than in exon and UTR sequences

(Figure 2E). During the distribution of DNA methylation in upstream 2K and downstream 2K regions,

we observed that while gene bodies exhibited high mCG/CG but low mCHH/CHH ratio, the

opposite took place in upstream 2K and downstream 2K sequences (Figure 2F). Based on Kyoto

Encyclopedia of Genes and Genomes pathway enrichment analysis, DMGs were mainly assigned

to metabolic pathways and biosynthesis of secondary metabolites (Figure 2G). A heatmap of DMGs

displaying simultaneously all three sequence contexts (CG, CHG, and CHH) allowed a broader overview

of the epigenetic plasticity events at both examined periods between the two regions (Figure 2H).

For instance, the hypermethylation of a putative DETOXIFICATION 18 (Soltu.Atl.10_4G001390)

has been detected at harvest, whereas hypomethylation of three chloroplastic plastoglobulins-1

(Soltu.Atl.08_1G001340, Soltu.Atl.08_3G001840, and Soltu.Atl.08_3G001850) has been determined at

post-harvest.
iScience 26, 105917, January 20, 2023 3



Figure 2. Differential methylation region (DMR) of the tubers harvested fromNaxos (PGI potatoes) and Lakoma (control potatoes), at harvest and

at post-harvest

(A) Circos plot for DMR condition in three contexts (CG, CHG, and CHH). The circos plot represents (from outside to inside): (i) Hyper DMR statistical value:

log5 (areaStat); the higher and bigger the point, the larger differences between two groups. (ii) TE, the heatmap of percentage of repeat element. (iii)

Heatmap of gene density. (iv) Hypo DMR statistical value: log5 (areaStat); the higher and bigger the point, the larger differences between two groups.

(B) Cluster heatmap for DMRmethylation level in three contexts (CG, CHG, and CHH). The x axis is the comparison group name, the y axis is the methylation

level and cluster results.

(C) Violin plot for DMR methylation level in three contexts (CG, CHG, and CHH). The x axis is the comparison group name, the y axis is the methylation level.

(D) Venn plot of DMGs in three contexts (CG, CHG, and CHH).

(E) Methylation level distribution at functional genetic elements in three contexts (CG, CHG, and CHH). The x axis is the functional genetic elements the y axis

is the methylation level. Left label is methylation level in non-CG context; the right label is methylation level in CG context.

(F) Methylation level distribution at up/downstream 2 kb and gene body in all three contexts (CG, CHG, CHH). The x axis is the functional genetic elements,

the y axis is the methylation level. Left label is methylation level in non-CG context, the right label is methylation level in CG context.
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Figure 2. Continued

(G) KEGG enrichment scatterplot for DMR genes in all three contexts (CG, CHG, and CHH). The x axis represents Rich factor, and the y axis represents

pathway name. The size of points stands for DMR-related genes counts and the colors stand for different q-values range.

(H) Heatmap of DMGs genes in all three contexts (CG, CHG, and CHH). Red indicates hypermethylation and green hypomethylation in Naxos. Data obtained

from Table S2.
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Transcriptomic profiles of the potatoes from two geographic regions

RNA-seq experiment was also conducted for the same samples as used for methylation analysis (Table S1).

TPM-normalized values for each transcript were hierarchical-clustered and used to generate a heatmap

that clearly shows a distinct expression pattern acceding to region and especially to stage (Figure 3A).

Venn diagram showed genes that were commonly and exclusively modulated by the different environ-

ments and stages in potato (Figure 3B). For example, 940 and 947 genes were differentially expressed in

‘‘Naxos’’ potatoes compared to the ‘‘Lakoma’’ ones at harvest and at post-harvest, respectively (Figure 3B).

Interestingly, we found 31 commonly expressed DEGs between Naxos and Lakoma, at harvest and at post-

harvest, including cysteine protease inhibitor (Soltu.Atl.03_3G022650) and Kunitz trypsin inhibitors

(Soltu.Atl.03_4G014820).

To validate the accuracy of RNA-seq results, 10 genes differentially expressed between groups were

selected for qRT- PCR (Figure S1; Table S3). The primary functions of the 10 verified genes were related

to ethylene biosynthesis (1-aminocyclopropane-1-carboxylic acid synthase), hormone or stress-responsive

transcription factors (SAUR, AP2/ERF, and WRKY), cell wall loosening (polygalacturonase), ascorbate

recycling (monodehydroascorbate reductase), and carotenoid metabolism (nine-cis-epoxycarotenoid

dioxygenase). Results indicated a strong positive linear correlation of the expression profiles between

the two methods for both harvest (R2 = 0.969) and post-harvest sampling (R2 = 0.985), confirming the

reliability of the RNA-Seq results obtained in this study (Figure S1).

Protein signature from two geographic regions

To interpret the proteomic data in a PGI context, we focused only on proteins that constantly accumulated

in the tubers of Naxos (PGI) at both stages. Proteomic data were clustered via hierarchical cluster analysis

demonstrating a distinct separation mainly between regions and secondly between stages (Figure 3C).

Volcano plots revealed 156 and 78 differentially expressed proteins (DEPs) that were increased in Naxos

vs Lakoma, at harvest and post-harvest, respectively (Figures 3D and 3E). Similarly, 182 and 157 DEPs

decreased in Naxos vs Lakoma, at harvest and post-harvest, respectively (Figures 3D and 3E). Four proteins

were increased in Naxos compared to Lakoma in both stages, being annotated as ribosomal protein L1p/

L10e family (Soltu.Atl.11_1G013990.1), DNAJ heat shock N-terminal d-c (Soltu.Atl.03_1G024300.1), acyl

carrier protein (Soltu.Atl.06_2G011230.1), and sucrose synthase (Soltu.Atl.09_1G015370.3). Moreover, 35

proteins (i.e., serine protease inhibitors, peroxidases, basic chitinases, and Kunitz trypsin inhibitors) were

decreased in both stages of Naxos compared to Lakoma (Figure 3E).

Transcriptome-based pairwise co-expression analysis across multi-omics datasets reveals

molecular hallmarks in potatoes from the two regions

There is a large interest in networked food science experiments for characterizing PGI signatures at molec-

ular scale. Consequently, our work presents a pipeline system for pairwise integration and transcriptome-

based co-expression analysis of epigenomic, transcriptomic, and proteomic data (Figure 4, Table S4). Our

findings indicated that Pearson correlation coefficients showed more negative values between the

transcriptome and methylome datasets for both promoter (53.3%) and gene (50.58%), with 1% and

1.16% significant values, respectively (Figures 4A and 4B), while between the transcriptome and proteome

datasets, positive correlation values were mostly observed (52.67%), with a 4.94% out of them being signif-

icant (Figure 4C). Bothmethylation and transcriptome datasets of Naxos and Lakoma were positively corre-

lated at both harvest and post-harvest stage (Figures 4D and 4E). Proteomes and transcriptome datasets of

Naxos and Lakoma exhibited positive correlations in all pairwise comparisons (Figure 4F). Regarding

methylation and transcriptomic values, no IDs were detected in Naxos for both promoter and genebody,

whereas only one ID (promoter) and two IDs (genebody) were found at both examined stages in Lakoma

(Figures 4G and 4H). One gene ID for Naxos (Soltu.Atl.06_3G007420; Fe superoxide dismutase) and

seven for Lakoma (etc. Soltu.Atl.01_2G024990; GDSL-like lipase/acylhydrolase superfamily protein,

Soltu.Atl.03_3G018760; peroxidase superfamily protein) showed transcriptomic and proteomic abundance

in both stages (Figure 4I).
iScience 26, 105917, January 20, 2023 5



Figure 3. Transcriptome and proteome profiles of tubers in the regions of Naxos (PGI potatoes) and Lakoma (control potatoes)

(A) Hierarchical cluster analysis of transcriptomic data in tubers of two regions at harvest and at post-harvest.

(B) Venn diagrams of differentially expressed genes (DEGs) between Naxos and Lakoma at harvest (H) and post-harvest (PH). For the common DEGs between

Naxos and Lakoma at the two stages, heatmaps representing the fold change (FC) in FPKM values of the up- and downregulated genes at H and at PH are

also provided.
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Figure 3. Continued

(C) Hierarchical cluster analysis of proteomic data in tubers of the two regions at H and at PH.

(D) Volcano plots of Lakoma vs Naxos at H and PH.

(E) Venn diagrams of differentially expressed proteins (DEPs) between Naxos and Lakoma at H and at PH. Heatmaps of the commonly increasing or

decreasing DEPs in Naxos vs Lakoma are also provided. Data obtained from Tables S4 and S5.
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We also highlighted the five most significant abundance shifts in our cross-omics datasets (Figures 4J,

4K and 4L; Table S5). Most methylated IDs of both promoter and gene were unique for Naxos and

Lakoma, respectively (Figures 4J and 4K). Carboxypeptidase A inhibitor domain-containing protein

(Soltu.Atl.07_1G009140) and PATATIN-like protein (Soltu.Atl.08_0G002410) decreased their transcriptional

activity in Naxos during harvest and post-harvest. Accordingly, a zinc finger (C2H2 type) family protein

(Soltu.Atl.04_0G006320) gene increased its expression in both stages (Figure 4J). Naxos cultivar showed

decreased genebody methylation of serine carboxypeptidase-like (Soltu.Atl.05_2G016570) in harvest, as

4-phosphopantetheine adenylyltransferase (Soltu.Atl.02_3G005740) was decreased in both promoter

and genebody at post-harvest (Figures 4J and 4K). It is noticeable that the protein abundance and gene

expression of the potato type II proteinase inhibitor family-containing domain (Soltu.Atl.03_4G015120)

was negatively affected in Naxos at both stages (Figure 4K). Kunitz family trypsin and protease inhibitor

protein (Soltu.Atl.03_4G015020), as well as trypsin and protease inhibitor containing domain protein

(Soltu.Atl.03_4G014750), were among the top differentiated IDs on a transcript level and decreased their

expression in Naxos at both stages (Figure 4K). As for the top differentiated proteins, serine protease

inhibitor (Soltu.Atl.09_4G017710) decreased in Naxos for both stages, whereas acyl transferase/acyl hydro-

lase/lysophospholipase superfamily protein (Soltu.Atl.08_0G002400) and trypsin and protease inhibitor

containing domain protein (Soltu.Atl.03_4G014790) increased in Naxos at harvest (Figure 4K).

Triple multi-omics approaches magnify the possibility of tuber biomarkers detection

Aiming to provide a pipeline integrating data from multiple omics layers, we apply analytical tools, such as

correlation downstream analysis and causal models, to identify and characterize the PGI-driver biomarkers.

Initially, Pearson correlation was used to examine the linear relationship of the common gene IDs within

methylome (CHH, promoter or gene body), transcriptome, and proteome (Figure 5A, Table S6). We

then illustrated the changes in tubers of Naxos via heatmap and cluster analysis (Figure 5B), presenting

distinct differences among -omics datasets. Analyzing the outcome in detail, we have focused on clusters

with a steadily increasing pattern across -omics data in both methylome CHH, promoter or gene body at

harvest and post-harvest. For instance, UDP-glycosyltransferase (Soltu.Atl.05_3G001570), glycosyl hydro-

lase (Soltu.Atl.03_2G010490), and zinc finger (C2H2 type) (Soltu.Atl.04_0G006320) increased mainly their

levels of proteome and transcriptome in Naxos tubers, with no effect on promoter’s methylome, while

this pattern was not observed on gene body methylome CHH-DMR, but in CHG-DMR with 4-alpha-

glucanotransferase (Soltu.Atl.02_4G000640). In contrast, lipoxygenase (Soltu.Atl.08_3G003490) has been

found to decrease the levels of methylome promoter, proteome, and transcriptome in Naxos tubers.

Notably, glutathione S-transferase (Soltu.Atl.09_0G002590) has been increased CHH-DMR methylation

in both promoter and gene body at harvest followed by a decrease in transcriptome and proteome at

both stages (Figure 5B). Following gene ontology (GO) classification, the datasets from CHH-DMRmethyl-

ation in promoter or gene body, transcriptome, and proteome have been enriched to unravel the major

groups of genes/proteins that are involved. This approach evidenced that protein and ATP binding

were the most enriched molecular functions in the triple datasets (Figure 5C).

In this study, we employed the dynamics of causal models, based on the methylome/transcriptome/prote-

ome triplets in the triple datasets to detect possible causal relationships among genes or proteins IDs. Four

causal relationships were determined (three of them V-type). Among them, the isoflavone reductase-like

protein (Soltu.Atl.04_4G019440) along with the DNA-damage-repair/toleration protein DRT100

(Soltu.Atl.11_2G007320), as well as the chaperone protein ClpB4 (Soltu.Atl.06_2G004400) with the L-ascor-

bate peroxidase (Soltu.Atl.09_2G005830), were the cause of the uncharacterized protein LOC102594761

(Soltu.Atl.05_4G020850) and the plasma membrane-associated cation-binding protein 1 (Soltu.Atl.10_

2G000120), respectively (Figure 5D).

Microbials coupled with -omics data as an approach to enhance biomarker discovery

As a final step of the present work, the PGI-relatedmolecular changes jointly detected by triple multi-omics

analysis (Figures 5 and 6) were integrated with metagenomics, enormously expanding the possibility to
iScience 26, 105917, January 20, 2023 7



Figure 4. Pairwise transcriptome-based co-expression analysis across methylation, transcriptome, and proteome datasets

(A–F) (A–C) Pearson correlation values’ distribution for each omic dataset integration across tissues. Pearson correlation heatmap analysis of transcriptome

vs transcriptome (lower triangular matrix) and (D) promoter vs promoter (upper triangular matrix) (E) gene vs gene (upper triangular matrix), and (F) proteome

vs proteome (upper triangular matrix). The main diagonal in all three heatmaps remains blank, and the magnitude of the correlation is depicted in both the

color and size of the spheres (all correlations were statistically significant at the 0.01 level).

(G–I) Venn diagrams of each integrated analysis for transcriptome-to-promoter methylation (G), gene body methylation (H) and proteome (I).

(J–L) Intensity plots displaying the most significant differences between Naxos and Lakoma in both stages based on transcriptome-promoter methylome (J),

transcriptome-gene methylome (K), and transcriptome-proteome (L) dataset. H: Harvest; PH: Post-harvest. Data obtained from Tables S6 and S9.
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identify potential biomarkers in PGI foods. To achieve this, a combination of multi-omics datasets

(methylome, transcriptome, and proteome) with the metagenome dataset, weighted network analysis,

was employed. Using this approach, 30 modules were generated from datasets (Table S7). Initially, we

performed a Pearson correlation analysis (Figure 6A) including all pairwise comparisons of the 30 modules

corresponding to the five datasets (methylome promoter/gene, transcriptome, proteome, and the micro-

bials; Table S8). This analysis resulted in 232 (53.3% of all comparisons) pairwise comparisons being higher

than 0.5 in absolute value (115 positive and 117 negative correlations). Thereafter, a correlation network

illustration was constructed (Figure 6B). The edges between nodes (absolute correlation values higher

than 0.5), the thickness (absolute correlation value), and the size of the node (degree of centrality) were

incorporated in this network. In the next step, the positive correlation of two separate groups that included

the microbial modules M1 and M2 was determined and marked the solid lines by red and purple color,

respectively (Figure 6B). Then, module eigengenes were used to determine patterns across modules, espe-

cially associated with Naxos. Within each group (M1, M9, M15, M22, M24, and M28), (M2, M11, M12, M17,

M25, and M27), an increase of eigengenes in Naxos based on Z score at harvest and post-harvest, respec-

tively, was evident (Figure 6C, Table S9).

To detect pairwise targeted correlations microbial of interest, we focused on themost abundant microbials

(genus levels) of the PGI potatoes (from Naxos) compared to the control ones (from Lakoma). These

includedNeobacillus from M1 and Planococcus fromM2. For both microbial taxa, it should be highlighted

that they were found to be dominant and highly abundant solely in Naxos, regardless the individual field,

while they were present at very low abundance in Lakoma. A Pearson correlation analysis was employed
8 iScience 26, 105917, January 20, 2023
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Figure 5. Methylome- (promoter/gene body), transcriptome-, and proteome-based interactions of tubers in the regions of Naxos and Lakoma at

harvest (H) and post-harvest (PH)

(A) Within the common gene IDs in methylome promoter/transcriptome/proteome dataset (n = 49, first panel), and methylome genebody/transcriptome/

proteome (n = 38, second panel), the distributions of Naxos H, PH, and Lakoma H, PH values are displayed in the main diagonal separately for methylome

(promoter/gene), transcriptome, and proteome, along with the scatterplots corresponding to their pairwise comparisons (lower triangular matrix), and the

respective Pearson coefficient values (upper triangular matrix).

(B) Heatmap and clustering of gene IDs from merged datasets of methylome promoter or gene body, transcriptome, and proteome, in the basis of CHH-

DMR, CHG-DMR, and CG-DMR.

(C) Gene ontology (GO) enrichment analysis of methylome promoter (n = 49, CHH) or gene body (n = 38, CHH), transcriptome, and proteome.

(D) Causal Bayesian networks were employed to identify causal relations between methylome/transcriptome/proteome triplets, within the common gene

IDs in methylome promoter/transcriptome/proteome dataset (n = 49), and methylome gene body/transcriptome/proteome (n = 38), respectively. Data

obtained from Tables S10 and S11.
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based on these two genera inside each positively correlated group of modules, respectively. Hence,

Neobacillus has been positively correlated with 14 transcripts (M9) and seven DNA methylation CHH-

DMR-base genes correspond to four gene bodies (M24) and three promoters (M28), while Planococcus

with 45 transcripts (M11 and M12) and one protein (M17).

The large number of transcripts associated with these microbial taxa is a controversial issue, whereas those

related to proteins and DNAmethylation are consideredmore trustworthy due to the higher environmental

constancy. In this context, Neobacillus is related to hypermethylation of gibberellin 2-beta-dioxygenase

2-like (Soltu.Atl.05_2G019380) and xyloglucan endotransglycosylase protein 23 (Soltu.Atl.03_4G007570)

in gene body and promoter, respectively. Similarly, Planococcus is related to the protein of serine/threo-

nine protein phosphatase 2A regulatory subunit beta-like (Soltu.Atl.04_3G005110).

DISCUSSION

Undoubtedly, there is an increasing demand by consumers for reliable labeling of food products, as well as

for strict controls by retailers, manufacturers, and governments concerning food safety. The development

of fast, accurate, and convenient technologies is of utmost importance to assess and trace the authenti-

cated agricultural products from a certain terroir.13 The emerging -omics technologies including genomics,

epigenomics, transcriptomics, and proteomics, and more recent approaches such as metagenomics have

been developed with promising applications toward geographical origination.14 Specifically, metagenom-

ics represents a useful diagnostic tool to identify microbial signatures related to natural ecosystems where

plants and animals originate from.15 Pairing the usual -omic tools of Foodomics with microbe-based

methods such as ampliconmetagenomics represents a promising technique to improve our understanding

on the role of plant-microbe in deciphering plant performance under distinct terroirs.16 Despite the break-

through of multi-omics studies that brought food research into a new era, the association of food products

with PGI traits has not been conducted yet. Furthermore, to the best of our knowledge, no broad-scale

quantitative and integrative analysis of transcriptomes, epigenomes, and proteomes has been performed

yet, that would enable the application of the ‘‘Foodomics’’ approach in plant-derived foods. The lack of

such studies mostly relies on the difficulties that are raised with the integration of the multiple -omics ap-

proaches due to the need of demanding bioinformatics tools and mathematical models required for the

accurate quantification and characterization of such large amount of data. In the present study, we

achieved the integration of multiple -omics technologies through the application of analytical tools,

such as correlation downstream analysis and causal models, aiming to the identification and characteriza-

tion of putative PGI-driver biomarkers.

The transcript expression and protein abundance of the potato grown at different environments ex-

hibited distinct changes, confirming previous observation that transcriptome and proteome represents

a useful diagnostic tool to identify plant performance under distinct terroirs.4,6,13 For instance, the su-

crose synthase protein which catalyzes the conversion of sucrose into glucose and fructose has been

found in higher abundance at both stages of Naxos potatoes. This quality trait may be responsible for

the characterization of ‘‘premium quality’’ in Naxos potatoes, since an enhanced sucrose synthase activity

has been correlated with an increase in starch level and yield in potatoes.17 Sucrose synthases have been

involved in the synthesis of carbohydrate polymers such as starch and celluloses, but also in a broad

number of other components of fruits and vegetables during development, ripening, and post-harvest

storage.18 Exogenously applied sucrose has been also employed as a method to preserve strawberry

quality during storage.19
10 iScience 26, 105917, January 20, 2023



Figure 6. Weighted correlation network analysis (WGCNA) of microbials, mRNAs, proteins, and DNA methylation in Naxos vs Lakoma at harvest

(H) and post-harvest (PH)

(A) Pearson correlation analysis of all pairwise comparisons between the 30 modules corresponding to the 4 omics datasets (methylome promoter/gene,

transcriptome, and proteome), and the microbials. The magnitude of the correlation is depicted in both the color and size of the spheres. Correlations which

were lower than 0.5 in absolute value are marked with an ‘‘x’’.
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Figure 6. Continued

(B) Network illustration of microbials (Modules M1-M6), mRNAs (ModulesM7-M13), proteins (ModulesM14-M22), and DNAmethylation (genebodymodules

M23-M26, promoter modulesM27-M30) and positive correlation of M1 andM2 with the rest of modules. Themodules are represented by the network nodes.

The edges connecting the nodes are displayed only when the nodes are correlated with a Pearson coefficient higher than 0.5 in absolute value. Solid lines

correspond to positive correlations and dotted lines correspond to negative correlations. The thickness of the lines reflects the magnitude of the correlation

(absolute values). The size of the node indicates the degree of centrality (number of edges drawn from the node).

(C) The trend of modules-interest M1, M9, M15, M22, M24, M28, and M2, M11, M12, M17, M25, M27, based on their z-scores.

(D) Heatmap of positive correlated (p % 0.01) mRNAs (higher tpm than 2 in stages and areas), proteins, and DNA methylation with specific microbials:

Neobacillus (M1) and Planococcus (M2). Data obtained from Table S7.
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Another interesting finding is that a Kunitz trypsin inhibitor, which probably acts as a regulator of endog-

enous proteases and assists in defense against pests and pathogens,20 has been revealed to decrease at

both transcript and protein levels through the single and pairwise analysis in Naxos potatoes (Figures 3 and

4). By pairing the transcriptomic and epigenomic or proteomic tools with microbe-based methods, such as

amplicon metagenomics, we uncovered that potato tubers cultivated in the semi-arid region of the island

of Naxos, which represents a unique Mediterranean agroecosystem, recruit more beneficial microorgan-

isms, possibly to cope with the unfavorable environmental conditions.21 For example, hypermethylation

of xyloglucan endotransglycosylase protein (modifying cell wall22) and gibberellin 2-beta-dioxygenase

2-like (catalyzing gibberellin23 that promoting sprouting in potato tubers24) could be driven byNeobacillus,

which was found to be a dominant and highly abundant species being present only in Naxos tubers

(Figure 6C). These results are in accordance with the notion that soil microbial biogeography is predomi-

nantly governed by regional soil properties, unique for each terroir.25,26 Furthermore, recent epigenomic

studies highlighted that modification of DNA methylation induced by plant-microbe interactions are able

to promote plant growth.27 It is interesting to note that a key microbe like as Neobacillus was preserved

during post-harvest storage. In this frame, the validation of this putative biomarker over different post-har-

vest timepoints, as well as sample locations, would serve as a promising tool toward authenticating these

PGI products (Figures 1 and 6). The rhizosphere of potatoes has been previously found to be a rich source of

Bacillus strains possessing plant-growth-promoting properties;28 however, the exact role of such strains in

improving plant performance, quality, or shelf-life remains elusive.

Most authentication techniques for food products have focused on species or varietal identification, as

well as on the chemical composition of processed foods.29 Yet, quality traits of plant products can also

be determined by cultivation conditions (climate, location, management systems, soil conditions etc.).30

Importantly, cultivation conditions have been shown to induce DNA methylome changes in a wide variety

of plants.31,32 DNA methylome reflects the potato tubers’ perspective of the growing environment,

therefore can serve as an appealing diagnostic biomarker (epimarker) tool for geographical origin of

otherwise identical crops.33 Our findings demonstrated that hypermethylation of glutathione S-trans-

ferase (enzymes that are induced by stress34) at the gene body and promoter leads to a decline of

both protein and transcript levels in Naxos tubers (Figure 5B). Moreover, the causal analysis revealed

a V-type connection, where the cause is the (UP) LOC102594761 (Figure 5D) driving us to conclude

that this ID is crucial and needs further analysis to understand the proposed connection about hyperme-

thylation of isoflavone reductase (involved in secondary metabolites biosynthesis35), DNA-damage-

repair/toleration protein DRT100 (protect DNA under stress36) and uncharacterized protein (UP)

LOC102594761 combined with a decrease in transcripts and proteins at harvest and an increase at

post-harvest in Naxos (Figure 5D).

The results from this study are of interest also beyond geographical origin studies. For example, putative

epimarkers such as the hypermethylation of DETOXIFICATION 18 (Soltu.Atl.10_4G001390) in Naxos could

be used not only to tag cultivation system and geographical region of origin but also in more nuanced ap-

plications to satisfy the ever-increasing demand of the consumers for high-quality food products. These

could be either in identifying the tissue of origin in plant products (since different plant tissues have diverse

methylation profiles) or other factors affecting post-harvest food quality such as storage, transport, and

processing conditions.33 Collectively, this innovative broad-scale quantitative and integrative work vali-

dated the expression of key gene markers by their protein abundance and identified putative epimarkers

as well as key microbes to authenticate a popular PGI product such as Naxos potato. At last, but not at

least, an innovative pipeline was developed toward the establishment of breakthrough approaches toward

food characterization and authentication.
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Limitations of the study

Our study represents the first multi-omic approach integrating the transcriptome, the proteome, and the

epigenome, with the metagenome of a potato of Protected Geographical Indication, to identify terroir-

specific ‘‘footprints’’. However, as the biomarkers identified following causal-model analysis entirely

depend on computational modeling, further experimentation is necessary to validate their biological sig-

nificance and causality using more sample locations and/or different PGI potatoes, as well as their stability

and persistence over years or different geographic regions. On a bioinformatic note, the lack of polyploid-

specific genome-guided assemblers able to use more than one reference genome, such as in the case of

tetraploid potato, may lead to missing alternative homologous sequences, limiting the potential for

in-depth downstream transcriptomics analysis. Conclusively, therefore, there are still existing challenges,

both experimental and methodological, in capturing dominant terroir-originated marks to diversify and

authenticate Protected Geographical Indication agricultural products that are stable across growing

seasons and post-harvest storage.
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STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

S. tuberosum L. (Spunta) This study N/A

Chemicals, peptides, and recombinant proteins

CTAB Sigma-Aldrich cat# H6269

TRIzol� reagent Invitrogen, CA, USA cat# 15596018

DTT Acros Organics cat# 32719

Iodoacetamide Thermo Fisher Scientific cat# AC122270050

80% ethanol Fisher Chemical cat# 16649582

100% acetonitrile Fisher Chemical cat# A998-1

Trypsin/LysC MS grade, Promega cat# V5072

Ammonium bicarbonate Sigma-Aldrich cat# 09830

Critical commercial assays

RNase-Free DNase Set Qiagen, Hilden, Germany cat# 79254

EZ DNA Methylation-Gold� Kit Zymo Research, Orange, CA, USA cat# D5007

SuperScript� First-Strand Synthesis System Invitrogen� Thermo Fisher

Scientific, Inc.

cat# 18080051

Luna� Universal qPCR Master Mix New England BioLabs cat# M3003S

DNeasy PowerSoil Pro Kit QIAGEN, Carlsbad, USA cat# 47016

LongAmp Hot Start Taq 2x Master Mix New England Biolabs cat# M0533S

16S Barcoding Kit 1-24 Oxford Nanopore Technologies, UK cat# SQK-16S024

Qubit� dsDNA HS and BR Assay Kits Thermo Fisher Scientific, USA cat# Q32851

Deposited data

RNASeq data This study PRJNA855343

Bisulfite-Seq data This study PRJNA855343

Metagenome data This study PRJNA854325

Mass spectrometry proteomics data This study PXD035074

Atlantic v2.0 http://spuddb.uga.edu/phased_tetraploid_

potato_download.shtml

EF-1a Tang et al.40 https://doi.org/10.1186/s13007-017-0238-7

Oligonucleotides

Universal primers for qPCR see Table S1 This study N/A

16S barcoded primers This study N/A

Software and algorithms

HTSeq v0.11.1 N/A http://www-huber.embl.de/users/anders/HTSeq/

R v4.1.0 N/A https://cran.r-project.org/web/packages/pcalg/

index.html

R v4.1.0 N/A https://github.com/vegandevs/vegan

R v4.1.0 N/A https://rdrr.io/r/graphics/graphics-package.html

R v4.1.0 N/A https://www.tidyverse.org/

R v4.1.0 N/A https://cran.r-project.org/web/packages/gplots/

index.html

(Continued on next page)

16 iScience 26, 105917, January 20, 2023

http://spuddb.uga.edu/phased_tetraploid_potato_download.shtml
http://spuddb.uga.edu/phased_tetraploid_potato_download.shtml
https://doi.org/10.1186/s13007-017-0238-7
http://www-huber.embl.de/users/anders/HTSeq/
https://cran.r-project.org/web/packages/pcalg/index.html
https://cran.r-project.org/web/packages/pcalg/index.html
https://github.com/vegandevs/vegan
https://rdrr.io/r/graphics/graphics-package.html
https://www.tidyverse.org/
https://cran.r-project.org/web/packages/gplots/index.html
https://cran.r-project.org/web/packages/gplots/index.html


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

R v4.1.0 Baselga and Orme44 https://doi.org/10.1111/j.2041-210X.2012.00224.x

R v4.1.0 Galili, 201254 https://doi.org/10.1093/bioinformatics/btv428

R v4.1.0 N/A https://horvath.genetics.ucla.edu/html/Coexpression

Network/Rpackages/WGCNA/

Galaxy Segata et al.46 https://huttenhower.sph.harvard.edu/galaxy/

FastQC v0.11.5 N/A https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Trimmomatic (Trimmomatic-0.36) N/A http://www.usadellab.org/cms/?page=trimmomatic

Bismark v0.19.0 Krueger and Andrews38 https://doi.org/10.1093/BIOINFORMATICS/BTR167

Hisat2 N/A http://daehwankimlab.github.io/hisat2/

DIA-NN 1.8 N/A https://github.com/vdemichev/DiaNN

Perseus software (1.6.15.0) N/A https://maxquant.net/perseus/

MINKNOW v1.11.5 Oxford Nanopore Technologies https://nanoporetech.com/nanopore-sequencing-

data-analysis

Guppy v5.0.17 Oxford Nanopore Technologies https://nanoporetech.com/nanopore-sequencing-

data-analysis

EPI2ME Oxford Nanopore Technologies https://nanoporetech.com/nanopore-sequencing-

data-analysis

Centrifuge Kim et al.43 https://doi.org/10.1101/gr.210641.116

Other

MinION Mk1C Oxford Nanopore Technologies, UK https://nanoporetech.com/

QuantStudio�5 Real-Time PCR System Thermo Fisher Scientific https://www.thermofisher.com/gr/en/home.html

Illumina Novaseq 6000 platform Novogene, Beijing, China https://www.novogene.com/eu-en/contact-us/

Hydrophilic and hydrophobic SeraMag

carboxylate-modified beads

GE Life Sciences https://www.gehealthcare.com/products/life-sciences

NanoDrop� One/OneC Microvolume

UV-Vis Spectrophotometer

Thermo Fisher Scientific https://www.thermofisher.com/gr/en/home.html

Dionex Ultimate 3000 nanoRSLC Thermo Fisher Scientific https://www.thermofisher.com/gr/en/home.html

Thermo Q Exactive HF-X Orbitrap

mass spectrometer

Thermo Fisher Scientific https://www.thermofisher.com/gr/en/home.html

HPLC Column Discovery� HS C18,

5 mm, 25 cm 3 2.1 mm

Supelco Analytical Products https://www.sigmaaldrich.com/GR/en/life-

science/supelco

Applied Biosystems� QuantStudio�
5 Real-Time PCR System

Thermo Fischer Scientific,

Waltham, MA, USA

https://www.thermofisher.com/gr/en/home.html

Agecount AMPure XP beads Beckman Coulter Life Sciences, USA https://www.beckmancoulter.com/about-beckman-

coulter/life-sciences

Qubit 4 Fluorometer Thermo Fisher Scientific https://www.thermofisher.com/gr/en/home.html

MinION R9.4.1 flow cell (FLO-MIN106) Oxford Nanopore Technologies, UK https://nanoporetech.com/

S220 Focused-ultrasonicator Covaris, Woburn, MA, USA https://www.covaris.com/

Eppendorf Thermomixer Thermo Fisher Scientific https://www.thermofisher.com/gr/en/home.html
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, IG (giannis.ganopoulos@gmail.com).
Materials availability

This study did not generate any new unique materials or reagents.
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Data and code availability

Raw data of RNASeq, Bisulfite-Seq and Metagenome were deposited in the National Centre for Biotech-

nology Information (NCBI) Sequence Read Archive (SRA) under BioProject accession numbers:

PRJNA855343, PRJNA855343 and PRJNA854325, respectively. The mass spectrometry proteomics data

have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository 47 with the

dataset identifier PXD035074. These accession numbers (DOI) are also listed in the key resources table.

This paper does not report original code. Any additional information required to reanalyze the data re-

ported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Plant material and experimental sites

Potatoes, cultivar Spunta (Oldenburger, Assem, Holland), were cultivated in two regions of Greece, i.e.,

Naxos Island, Aegean Sea, Greece, and Lakoma, Chalkidiki, North Greece (Figure 1A, Table S10), following

the same experimental and cultivation protocol (composition analysis of potatoes provided in Table S11).

Environmental data between the two regions are also provided in Table S10. The soils in Naxos were char-

acterized as loamy sand or sandy loam (clay content, 13%; sand content 66%), with relatively high organic

matter content (2.1%), and pH 7.6 whereas the soils in Lakoma were characterized as clay loam (clay

content, 27%; sand content, 45%), with lower organic matter content (1.4%) and pH 7.9. Soil cultivation,

fungicide treatments and water application during dry periods, were carried out in accordance with the

common potato production schemes in Greece. During crop growth, plants were regularly monitored

for the occurrence of stress, pests, and diseases. The harvest of the tubers was performed early in June

2021 for both collection sites, after foliage desiccation. All tubers were placed in sterile bags at 10�C
and carried to the lab, within 12 hours. Samples for subsequent analyses were snap-frozen in liquid nitrogen

and stored at �80�C. At harvest, there were eight and six samples (pooled tubers from an individual plant,

with three biological replicates for each sample), corresponding to different collection sites of Naxos and

Lakoma, respectively. The exact sampling locations are provided in Table S10. For the post-harvest exper-

iment, tubers were stored at 10�C for one-month prior subsequent analyses.
Field acknowledgment

This research was undertaken on potato samples harvested by different locations in Greece, as illustrated in

Figure 1A, while their co-ordinates are reported in Table S10. We acknowledge Marilitsa Zacharatou and

Mihalis Vernikos from the Union of Agricultural Cooperatives of Naxos (Agricultural Company S.A.) for

providing access to the experimental field sites.
METHOD DETAILS

Transcriptome and whole-genome bisulfite sequencing

Library construction

Total RNA of pooled tubers from the eight collection sites of Naxos, and the six collection sites of Lakoma

(Table S10), with three biological replicates each, was isolated using TRIzol� reagent (Invitrogen, CA, USA),

followed by rRNA depletion and DNaseI treatment (Qiagen, Hilden, Germany). For each RNA sample at

harvest and at post-harvest, a paired-end strand-specific Tru-seq compatible library was constructed

following manufacturer’s instructions.

High quality genomic DNA was isolated from the same samples as previously described for the RNASeq

experiment, using the CTAB method37 to perform whole-genome bisulfite sequencing (WGBS) at Beijing

Novogene Technology Co., Ltd. with target sequencing depth at 303. The isolated DNA was fragmented

by sonication to 200–300 bp using a Covaris S220 (Covaris, Woburn, MA, USA), followed by end repair and

A-ligation. After ligation to cytosine-methylated barcodes, the DNA fragments were treated twice with

bisulfite using an EZ DNA Methylation-Gold� Kit (Zymo Research, Orange, CA, USA). The libraries were

then prepared according to the Illumina standard DNA methylation analysis protocol.

RNA-seq andWGBS libraries were sequenced (Paired-End, 150 bp) on the Illumina Novaseq 6000 platform

(Illumina, CA, USA) (Novogene, Beijing, China).
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RNA-seq data analysis

All data generated were aligned to the tetraploid Solanum tuberosum reference genome (Atlantic v2.0) via

Hisat2 applying the default parameters. Quantification of raw read counts/gene was conducted with

HTSeq v0.11.1 (http://www-huber.embl.de/users/anders/HTSeq/), selecting the ‘-s reverse –type=gene’

option. Transcripts Per Million (TPM) was used for the normalization of raw reads. Data were then trans-

formed to log2 and scaled (z-score: mean center divided by standard deviation). Principal Component

Analysis was performed for each sample and treatment) using the normalized data with the function

‘prcomp’ in R.

Whole-genome bisulfte sequencing (WGBS) data analysis

FastQC (fastqc_v0.11.5) was used to perform basic statistics on the quality of raw reads. These sequences,

produced by the Illumina pipeline in FASTQ format, were pre-processed through Trimmomatic

(Trimmomatic-0.36) software using the parameter (SLIDINGWINDOW: 4:15; LEADING:3; TRAILING:3;

ILLUMINACLIP: adapter.fa: 2: 30: 10; MINLEN:36). The low quality (<Q30) data was filtered out, and the

filtered high quality sequencing data wasmapped to the tetraploid Solanum tuberosum reference genome

(Atlantic v2.0) by Bismark v0.19.0.38

The Bioconductor package DSS (Dispersion Shrinkage for Sequencing) was used to identify differentially

methylated regions (DMRs) following default parameter settings with a reduced smoothing size (smooth-

ing span = 200). According to the distribution of DMRs throughout the genome, genes related to DMRs

were defined as DMR-associated genes whose gene body region (from TSS to TES) or promoter region

(upstream 2 kb from the TSS) overlapped with DMRs.

Quantitative real time (qRT) PCR assay

Total RNA isolated from aliquots of the sequenced samples was reverse transcribed to cDNA using

SuperScript� First-Strand Synthesis System (Invitrogen� Thermo Fisher Scientific, Inc.). Gene expression

profiles of ten genes (Table S3), randomly picked from the dataset, were analyzed by Quantitative real

time PCR (qRT PCR) using Luna� Universal qPCR Master Mix (New England BioLabs) in a QuantStudio�
5 Real-Time PCR System (Thermo Fisher Scientific) according to.39 For gene expression normalization,

EF-1a was used as reference gene.40
Proteomics

Bottom-up proteomic sample preparation

The protein extracts, obtained from three representative collection sites in Naxos and three in Lakoma,

with three biological replicates each one at harvest and at post-harvest, were processed according to

the sensitive Sp3 protocol. The cysteine residues were reduced in 100 mM DTT and alkylated in 200 mM

iodoacetamide (Acros Organics). 20 mg of beads (1:1 mixture of hydrophilic and hydrophobic SeraMag

carboxylate-modified beads, GE Life Sciences) were added to each sample in 50% ethanol. Protein

clean-up was performed on a magnetic rack. The beads were washed twice with 80% ethanol and once

with 100% acetonitrile (Fisher Chemical). The captured-on beads proteins were digested overnight at

37�C under vigorous shaking (1,200 rpm, Eppendorf Thermomixer) with 1 mg Trypsin/LysC (MS grade,

Promega) prepared in 25 mM Ammonium bicarbonate. The next day, the supernatants were collected,

and the peptides were purified using a modified Sp3 clean up protocol and finally solubilized in the mobile

phase A (0.1% Formic acid in water), sonicated and the peptide concentration was determined through

absorbance at 280 nm measurement using a nanodrop instrument.

LC-MS/MS analysis

Samples were analyzed on a liquid chromatography tandemmass spectrometry (LC-MS/MS) setup consist-

ing of a Dionex Ultimate 3000 nanoRSLC coupled in line with a Thermo Q Exactive HF-X Orbitrap mass

spectrometer. Peptidic samples were directly injected and separated on a 25 cm-long analytical C18 col-

umn (PepSep, 1.9 mm3 beads, 75 mm ID) using an one-hour long run, starting with a gradient of 7% Buffer B

(0.1% Formic acid in 80% Acetonitrile) to 35% for 40 min and followed by an increase to 45% in 5 min and a

second increase to 99% in 0.5 min and then kept constant for equilibration for 14.5 min. A full MS was ac-

quired in profile mode using a Q Exactive HF-X Hybrid Quadrupole-Orbitrap mass spectrometer, oper-

ating in the scan range of 375–1,400 m/z using 120K resolving power with an AGC of 3x 106 and maximum

IT of 60ms followed by data independent acquisitionmethod using 8 Th windows (a total of 39 loop counts)
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each with 15K resolving power with an AGC of 3x 105 and max IT of 22 ms and normalized collision energy

(NCE) of 26.

Proteomic data analysis

Orbitrap raw data from the 35 protein samples (one has failed) were analyzed in DIA-NN 1.8 (Data-

Independent Acquisition by Neural Networks) through searching against the Atlantic v2.0 (http://

spuddb.uga.edu/phased_tetraploid_potato_download.shtml) using the library free mode of the software,

allowing up to two tryptic missed cleavages and a maximum of three variable modifications/peptide. A

spectral library was created from the DIA runs and used to reanalyze them (double search mode). DIA-

NN search was used with oxidation of methionine residues and acetylation of the protein N-termini set

as variable modifications and carbamidomethylation of cysteine residues as fixed modification. N-terminal

methionine excision was also enabled. The match between runs feature was used for all analyses and the

output (precursor) was filtered at 0.01 FDR and finally the protein inference was performed on the level of

genes using only proteotypic peptides. The generated results were processed statistically and visualized in

the Perseus software (1.6.15.0).
Metagenomics

DNA extraction, amplification, and sequencing

Nearly 200 grams of 72 samples obtained from potato tuber-sphere at harvest or after one-month post-har-

vest storage, from all the individual collection sites (Table S10), was used for the microbial mapping of the

two different regions. High quality DNA was isolated with the DNeasy PowerSoil Pro Kit (QIAGEN, Carls-

bad, USA), following the manufacturer’s instructions and stored at �80�C. Amplification of the 16S rRNA

gene was performed using an Applied Biosystems� QuantStudio� 5 Real-Time PCR System (Thermo

Fischer Scientific, Waltham, MA, USA), using a LongAmp Hot Start Taq 2x Master Mix (M0533S, New En-

gland Biolabs), and 16S barcoded primers.

The 16S Barcoding Kit 1-24 (SQK-16S024, Oxford Nanopore Technologies, UK) was used for sequencing

the 16S ribosomal gene and creating the libraries. PCR products were purified with Agecount AMPure

XP beads (Beckman Coulter, USA), whilst the quantification was performed using Qubit 4 Fluorometer

and the dsDNA HS Assay Kit (Thermo Fisher Scientific, USA). The 72 libraries were created in accordance

with the manufacturer’s instructions and loaded on a MinION R9.4.1 flow cell (FLO-MIN106) on the MinION

Mk1C (Oxford Nanopore Technologies, UK). For data acquisition, MINKNOW software ver. 1.11.5 (Oxford

Nanopore Technologies) was employed.

Sequencing data processing and analysis

MinION� sequence reads (i.e., FAST5 data) were converted into FASTQ files by using Guppy software

(version 5.0.17) (Oxford Nanopore Technologies). To remove reads derived from humans, EPI2ME 16S

pipeline software was used. The unmatched reads to the human genome were considered as reads ob-

tained from bacteria.

Bacterial communities were identified through the same software (EPI2ME), which is based on Nextflow,41

that enables scalable and flexible scientific analysis.42 In order to classify the DNA sequences from micro-

bial samples, the Centrifuge software was used,43 which is based on the Burrows-Wheeler Transformation

(BWT) and the Ferragina-Manzini (FM) index, that enables timely and precise metataxonomic analysis.

Operational taxonomic units (OTU tables) by matching the NCBI taxa IDs to lineages and counting the

number of reads per NCBI taxa ID.

Alpha – diversity was calculated, using the ‘‘vegan’’ package, while beta – diversity was assessed, applying

the ‘‘vegan’’ and ‘‘betapart’’ packages,44 all in R studio software. Principal component analysis (PCA) and

Non-metric Multi-dimensional Scaling (NMDS) were conducted via ‘‘vegan’’ (https://github.com/

vegandevs/vegan) and ‘‘graphics’’ (https://rdrr.io/r/graphics/graphics-package.html) packages. In addi-

tion, analysis of similarities (ANOSIM) was also performed, using the vegan package. In order to run the

hierarchical clustering algorithm, multiple dendrograms by chaining were performed, using the ‘‘tidyverse’’

(https://www.tidyverse.org/ and ‘‘dendextend’’ packages.45 A heatmap based on the relative abundance

of OTUs was generated using the ‘‘gplots’’ package (https://cran.r-project.org/web/packages/gplots/

index.html), while stacked bar charts were performed, integrating the top 10 most abundant genera and
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species between tuber samples at harvest and at post-harvest. Finally, the linear discriminant analysis (LDA)

effect size (LEfSe) analysis was conducted46 via Galaxy software (https://huttenhower.sph.harvard.edu/

galaxy/), in an effort to characterize the microbial variance between the unique categories and determine

possible biomarkers for each one.

Statistical analysis

Hierarchical cluster and heatmap analysis were used for (i) DMR methylation level in three contexts (CG,

CHG, CHH) (Figure 2B), (ii) transcriptomic/proteomic data in tubers of two regions at harvest and at

post-harvest (Figures 3A and 3C), and (iii) gene IDs frommerged datasets of methylome promoter or gene-

body, transcriptome, and proteome. Pearson-based correlation analyses have been used to assess the cor-

relation (i) in all three dual comparisons, across and between groups, respectively (details in Multi-omics

analysis - Dual approach), (ii) between groups in both triple comparisons (details in Multi-omics analysis

- Triple approach), (iii) between the modules corresponding to the 4 omics datasets (methylome pro-

moter/gene, transcriptome and proteome), and the microbials (details in Dataset approach). The ranking

of the absolute mean intensity differences was employed as well in all dual omics datasets considerations

to assess the comparisons Naxos vs Lakoma (Harvest), andNaxos vs Lakoma (Post-Harvest) (details inMulti-

omics analysis - Dual approach). Causal Bayesian networks were used to detect cause-effect relations be-

tween triplets, in the methylome/transcriptome/proteome datasets (details inMulti-omics analysis - Triple

approach). For each omics dataset, and the microbials, weighted gene co-expression network analysis was

used to identify data clusters (modules) across areas and stages. The correlation among all modules, based

on their representative module eigengenes, was then assessed (details in Dataset approach). All the

analyses were performed with R Version 4.1.0.

Multi-omics analysis – Dual approach

The analysis was separately performed for the pairs corresponding to the same gene IDs in transcriptome

and methylome promoter or genebody, and transcriptome/proteome. Only pairs which exhibited valid

values for all tissues at both levels were considered. Of these, for the transcript/protein, only pairs with

values greater than 1 in at least one out of the four groups at both transcriptomic and protein levels

were further assessed (the methylome values were between 0 and 1), resulting in n = 1,247 transcript/meth-

ylome promoter pairs, n = 1,206 transcript/methylome gene pairs, and n = 1,033 transcript/protein pairs.

The Pearson coefficient was used to assess the correlation in all three dual comparisons, across (Figures 4A,

4B and 4C) and between groups (Figures 4D, 4E and 4F), respectively.

The absolute mean intensity difference was employed for the comparisons Naxos harvest vs Lakoma

harvest, and Naxos post-harvest vs Lakoma post-harvest within the transcriptome/methylome promoter

(n = 1,247), transcriptome/methylome gene (n = 1,206), and transcriptome/proteome datasets (n =

1,033), respectively (Figures 4J, 4K, and 4L). Particularly, separately for each omics dataset, the absolute

mean differences between the tissues compared were computed for each pair considered, and ranked.

The top 5 most abundant methylomes (promoter, gene)/transcripts/proteins are displayed in each case.

The horizontal lines represent the cumulative intensity corresponding to the top 10 most abundant

methylomes (promoter, gene)/transcripts/proteins.

Multi-omics analysis – Triple approach

Only triplets with valid values for the stages and areas were considered, which exhibited values greater than

1 in at least one out of the stages or areas at both transcriptomic and protein levels. Histograms, scatter-

plots, and the Pearson correlation coefficient were employed to assess, separately for each omic dataset,

the correlation between the four tissues, based on the datasets corresponding to common gene IDs in

methylome promoter/transcriptome/proteome (n = 49), and methylome genebody/transcriptome/prote-

ome (n = 38), respectively (Figure 5A, Table S6).

Heatmap and clustering was used on the gene IDs from the merged datasets of methylome promoter or

genebody, transcriptome, and proteome, in the basis of CHH-DMR, CHG-DMR, and CG-DMR (Figure 5B).

Next, the focus was in identifying causal relations between the methylome/transcriptome/proteome trip-

lets (Figure 5D). To this end, the constrained-based PC algorithm,47,48 was employed (‘‘pcalg’’ R package,49

https://cran.r-project.org/web/packages/pcalg/index.html), which is used to estimate the causal structure

induced by a causal Bayesian network.
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A similar approach, but based on the assessment of two omics databases, was used in.50,51 The PC algo-

rithm evaluates the independence for each pair of variables (X, Y) in a dataset, conditioning on all subsets of

all the remaining variables. If their association is persistent, it is considered to be causal.52 The output is a

network represented by a Markov equivalence class of the Directed Acyclic Graph (DAG), with a structure

consistent with the results of the tests of independence. It is assumed that causal sufficiency holds,48 which

implies that for every pair of measured variables, all their consensus direct causes are also measured. A

directed edge between X and Y exists, if and only if, the variables are conditionally dependent given S,

for all possible subsets S of the remaining nodes. In particular, the ‘‘pc’’ R function was used to estimate

the equivalence class of the DAG, under the Markov assumption that the distribution of the observed vari-

ables is faithful to a DAG.49 All genes exhibited continuous values, thus, the function ‘‘gaussCItest’’ was em-

ployed to perform the conditional independence tests.

Dataset approach

For each omics dataset (and microbials), weighted gene co-expression network analysis (WGCNA)

was employed (‘‘WGCNA’’ R package,53 https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/

Rpackages/WGCNA/), to identify data clusters (modules) across areas and stages. The ‘‘blockwiseConsen-

susModules’’ function was used with minimum module size = 30, module detection sensitivity = 2, and cut

height for module merging = 0.25). Next, the eigengenes of the modules were used to assess the correla-

tion among all modules (Figure 6A). Module eigengenes are themodule representatives and defined as the

first principal component of the expression matrix for each module. A module eigengene correlation

network was developed as well, with nodes representing the modules, and edges representing all the cor-

relations between the nodes with absolute value higher than 0.5 (Figure 6B).
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